active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
MARK(div(X1, X2)) → DIV(mark(X1), X2)
ACTIVE(minus(s(X), s(Y))) → MINUS(X, Y)
ACTIVE(geq(0, s(Y))) → MARK(false)
DIV(active(X1), X2) → DIV(X1, X2)
MINUS(X1, mark(X2)) → MINUS(X1, X2)
MARK(true) → ACTIVE(true)
ACTIVE(div(0, s(Y))) → MARK(0)
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
DIV(X1, active(X2)) → DIV(X1, X2)
MARK(if(X1, X2, X3)) → MARK(X1)
MINUS(X1, active(X2)) → MINUS(X1, X2)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
ACTIVE(div(s(X), s(Y))) → DIV(minus(X, Y), s(Y))
MINUS(active(X1), X2) → MINUS(X1, X2)
S(active(X)) → S(X)
ACTIVE(geq(X, 0)) → MARK(true)
ACTIVE(div(s(X), s(Y))) → GEQ(X, Y)
MARK(false) → ACTIVE(false)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
GEQ(active(X1), X2) → GEQ(X1, X2)
DIV(X1, mark(X2)) → DIV(X1, X2)
MINUS(mark(X1), X2) → MINUS(X1, X2)
DIV(mark(X1), X2) → DIV(X1, X2)
GEQ(mark(X1), X2) → GEQ(X1, X2)
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(s(X)) → MARK(X)
ACTIVE(if(false, X, Y)) → MARK(Y)
ACTIVE(div(s(X), s(Y))) → IF(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
ACTIVE(div(s(X), s(Y))) → S(div(minus(X, Y), s(Y)))
GEQ(X1, active(X2)) → GEQ(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
MARK(s(X)) → S(mark(X))
S(mark(X)) → S(X)
MARK(if(X1, X2, X3)) → IF(mark(X1), X2, X3)
ACTIVE(minus(0, Y)) → MARK(0)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
GEQ(X1, mark(X2)) → GEQ(X1, X2)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
ACTIVE(div(s(X), s(Y))) → MINUS(X, Y)
MARK(div(X1, X2)) → MARK(X1)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
MARK(0) → ACTIVE(0)
ACTIVE(geq(s(X), s(Y))) → GEQ(X, Y)
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MARK(div(X1, X2)) → DIV(mark(X1), X2)
ACTIVE(minus(s(X), s(Y))) → MINUS(X, Y)
ACTIVE(geq(0, s(Y))) → MARK(false)
DIV(active(X1), X2) → DIV(X1, X2)
MINUS(X1, mark(X2)) → MINUS(X1, X2)
MARK(true) → ACTIVE(true)
ACTIVE(div(0, s(Y))) → MARK(0)
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
DIV(X1, active(X2)) → DIV(X1, X2)
MARK(if(X1, X2, X3)) → MARK(X1)
MINUS(X1, active(X2)) → MINUS(X1, X2)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
ACTIVE(div(s(X), s(Y))) → DIV(minus(X, Y), s(Y))
MINUS(active(X1), X2) → MINUS(X1, X2)
S(active(X)) → S(X)
ACTIVE(geq(X, 0)) → MARK(true)
ACTIVE(div(s(X), s(Y))) → GEQ(X, Y)
MARK(false) → ACTIVE(false)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
GEQ(active(X1), X2) → GEQ(X1, X2)
DIV(X1, mark(X2)) → DIV(X1, X2)
MINUS(mark(X1), X2) → MINUS(X1, X2)
DIV(mark(X1), X2) → DIV(X1, X2)
GEQ(mark(X1), X2) → GEQ(X1, X2)
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(s(X)) → MARK(X)
ACTIVE(if(false, X, Y)) → MARK(Y)
ACTIVE(div(s(X), s(Y))) → IF(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
ACTIVE(div(s(X), s(Y))) → S(div(minus(X, Y), s(Y)))
GEQ(X1, active(X2)) → GEQ(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
MARK(s(X)) → S(mark(X))
S(mark(X)) → S(X)
MARK(if(X1, X2, X3)) → IF(mark(X1), X2, X3)
ACTIVE(minus(0, Y)) → MARK(0)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
GEQ(X1, mark(X2)) → GEQ(X1, X2)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
ACTIVE(div(s(X), s(Y))) → MINUS(X, Y)
MARK(div(X1, X2)) → MARK(X1)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
MARK(0) → ACTIVE(0)
ACTIVE(geq(s(X), s(Y))) → GEQ(X, Y)
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
DIV(X1, active(X2)) → DIV(X1, X2)
DIV(X1, mark(X2)) → DIV(X1, X2)
DIV(active(X1), X2) → DIV(X1, X2)
DIV(mark(X1), X2) → DIV(X1, X2)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
DIV(X1, active(X2)) → DIV(X1, X2)
DIV(X1, mark(X2)) → DIV(X1, X2)
DIV(active(X1), X2) → DIV(X1, X2)
DIV(mark(X1), X2) → DIV(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
GEQ(X1, active(X2)) → GEQ(X1, X2)
GEQ(active(X1), X2) → GEQ(X1, X2)
GEQ(X1, mark(X2)) → GEQ(X1, X2)
GEQ(mark(X1), X2) → GEQ(X1, X2)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
GEQ(X1, active(X2)) → GEQ(X1, X2)
GEQ(active(X1), X2) → GEQ(X1, X2)
GEQ(X1, mark(X2)) → GEQ(X1, X2)
GEQ(mark(X1), X2) → GEQ(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
S(mark(X)) → S(X)
S(active(X)) → S(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
S(active(X)) → S(X)
S(mark(X)) → S(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
MINUS(X1, active(X2)) → MINUS(X1, X2)
MINUS(mark(X1), X2) → MINUS(X1, X2)
MINUS(X1, mark(X2)) → MINUS(X1, X2)
MINUS(active(X1), X2) → MINUS(X1, X2)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
MINUS(X1, active(X2)) → MINUS(X1, X2)
MINUS(mark(X1), X2) → MINUS(X1, X2)
MINUS(X1, mark(X2)) → MINUS(X1, X2)
MINUS(active(X1), X2) → MINUS(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
MARK(s(X)) → MARK(X)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(s(X)) → ACTIVE(s(mark(X)))
Used ordering: Polynomial interpretation [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
MARK(s(X)) → MARK(X)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(active(x1)) = 0
POL(div(x1, x2)) = 1
POL(false) = 0
POL(geq(x1, x2)) = 1
POL(if(x1, x2, x3)) = 1
POL(mark(x1)) = 0
POL(minus(x1, x2)) = 1
POL(s(x1)) = 0
POL(true) = 0
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(s(X)) → MARK(X)
Used ordering: Polynomial interpretation [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(div(x1, x2)) = x1 + x2
POL(false) = 0
POL(geq(x1, x2)) = 0
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(div(0, s(Y))) → mark(0)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
active(minus(0, Y)) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark(div(X1, X2)) → active(div(mark(X1), X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))
mark(s(X)) → active(s(mark(X)))
mark(minus(X1, X2)) → active(minus(X1, X2))
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(if(false, X, Y)) → mark(Y)
mark(geq(X1, X2)) → active(geq(X1, X2))
active(if(true, X, Y)) → mark(X)
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(0) → active(0)
mark(true) → active(true)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
mark(false) → active(false)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
ACTIVE(if(true, X, Y)) → MARK(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
Used ordering: Polynomial interpretation [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
ACTIVE(if(true, X, Y)) → MARK(X)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(div(x1, x2)) = x1 + x2
POL(false) = 0
POL(geq(x1, x2)) = 0
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = 1 + x1
POL(true) = 0
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(div(0, s(Y))) → mark(0)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
active(minus(0, Y)) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark(div(X1, X2)) → active(div(mark(X1), X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))
mark(s(X)) → active(s(mark(X)))
mark(minus(X1, X2)) → active(minus(X1, X2))
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(if(false, X, Y)) → mark(Y)
mark(geq(X1, X2)) → active(geq(X1, X2))
active(if(true, X, Y)) → mark(X)
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(0) → active(0)
mark(true) → active(true)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
mark(false) → active(false)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(geq(s(X), s(Y))) → MARK(geq(X, Y))
Used ordering: Polynomial interpretation [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(div(x1, x2)) = x1 + x2
POL(false) = 0
POL(geq(x1, x2)) = x1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(div(0, s(Y))) → mark(0)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
active(minus(0, Y)) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark(div(X1, X2)) → active(div(mark(X1), X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))
mark(s(X)) → active(s(mark(X)))
mark(minus(X1, X2)) → active(minus(X1, X2))
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(if(false, X, Y)) → mark(Y)
mark(geq(X1, X2)) → active(geq(X1, X2))
active(if(true, X, Y)) → mark(X)
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(0) → active(0)
mark(true) → active(true)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
mark(false) → active(false)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(minus(X1, X2)) → ACTIVE(minus(X1, X2))
MARK(geq(X1, X2)) → ACTIVE(geq(X1, X2))
Used ordering: Polynomial interpretation [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(active(x1)) = 0
POL(div(x1, x2)) = 1
POL(false) = 0
POL(geq(x1, x2)) = 0
POL(if(x1, x2, x3)) = 1
POL(mark(x1)) = 0
POL(minus(x1, x2)) = 0
POL(s(x1)) = 0
POL(true) = 0
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
ACTIVE(if(true, X, Y)) → MARK(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(div(s(X), s(Y))) → MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
Used ordering: Polynomial interpretation with max and min functions [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(if(true, X, Y)) → MARK(X)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(div(x1, x2)) = x1 + x2
POL(false) = 0
POL(geq(x1, x2)) = 0
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = 1
POL(true) = 0
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(div(0, s(Y))) → mark(0)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
active(minus(0, Y)) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark(div(X1, X2)) → active(div(mark(X1), X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))
mark(s(X)) → active(s(mark(X)))
mark(minus(X1, X2)) → active(minus(X1, X2))
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(if(false, X, Y)) → mark(Y)
mark(geq(X1, X2)) → active(geq(X1, X2))
active(if(true, X, Y)) → mark(X)
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(0) → active(0)
mark(true) → active(true)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
mark(false) → active(false)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(if(true, X, Y)) → MARK(X)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(if(true, X, Y)) → MARK(X)
Used ordering: Polynomial interpretation with max and min functions [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(div(x1, x2)) = x1 + x2
POL(false) = 0
POL(geq(x1, x2)) = 1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = 1
POL(true) = 1
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(div(0, s(Y))) → mark(0)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
active(minus(0, Y)) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark(div(X1, X2)) → active(div(mark(X1), X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))
mark(s(X)) → active(s(mark(X)))
mark(minus(X1, X2)) → active(minus(X1, X2))
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(if(false, X, Y)) → mark(Y)
mark(geq(X1, X2)) → active(geq(X1, X2))
active(if(true, X, Y)) → mark(X)
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(0) → active(0)
mark(true) → active(true)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
mark(false) → active(false)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(if(false, X, Y)) → MARK(Y)
Used ordering: Polynomial interpretation with max and min functions [25]:
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(div(x1, x2)) = x1 + x2
POL(false) = 1
POL(geq(x1, x2)) = 1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = 1
POL(true) = 0
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(div(0, s(Y))) → mark(0)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
active(minus(0, Y)) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark(div(X1, X2)) → active(div(mark(X1), X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))
mark(s(X)) → active(s(mark(X)))
mark(minus(X1, X2)) → active(minus(X1, X2))
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(if(false, X, Y)) → mark(Y)
mark(geq(X1, X2)) → active(geq(X1, X2))
active(if(true, X, Y)) → mark(X)
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(0) → active(0)
mark(true) → active(true)
minus(X1, mark(X2)) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
mark(false) → active(false)
div(active(X1), X2) → div(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
geq(X1, active(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(div(X1, X2)) → ACTIVE(div(mark(X1), X2))
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
active(minus(0, Y)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(geq(X, 0)) → mark(true)
active(geq(0, s(Y))) → mark(false)
active(geq(s(X), s(Y))) → mark(geq(X, Y))
active(div(0, s(Y))) → mark(0)
active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(minus(X1, X2)) → active(minus(X1, X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(geq(X1, X2)) → active(geq(X1, X2))
mark(true) → active(true)
mark(false) → active(false)
mark(div(X1, X2)) → active(div(mark(X1), X2))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
geq(mark(X1), X2) → geq(X1, X2)
geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)
geq(X1, active(X2)) → geq(X1, X2)
div(mark(X1), X2) → div(X1, X2)
div(X1, mark(X2)) → div(X1, X2)
div(active(X1), X2) → div(X1, X2)
div(X1, active(X2)) → div(X1, X2)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X1)
From the DPs we obtained the following set of size-change graphs: